教案的设计要有助于培养学生的自主学习能力,教案可以帮助教师更好地实现教学目标,58心得网小编今天就为您带来了圆与方程的教案参考5篇,相信一定会对你有所帮助。

圆与方程的教案篇1
教学目标
知识与能力
结合操作活动进一步理解方程的意义。
过程与方法
会用含有未知数的等式表示等量关系。
情感、态度与价值观
感受方程与现实生活的密切联系,体验数学活动的探索性。
重点、难点
重点
理解方程的意义,会用含有未知数的等式表示等量关系。
难点
理解方程的意义。
教学准备
教师准备:
多媒体
学生准备:
练习本
教学过程
(一)新课导入:复习导入
1.出示:下面式子哪些是方程,并说明理由?
6+x=14 36-7=29 60+23>70 8+x
x+4t;14 ÷18=3 3x-12 5x+2x=63
2、写一个方程,然后在小组里交流,说说什么是方程。进一步巩固理解方程的意义。
设计意图:整理上节课学习的知识,进一步巩固学生对方程意义的理解。
(二)探究新知:
1.联系实际,应用拓展
师:看来同学们理解了方程的意义,掌握了方程的特征,其实方程就隐含在我们的生活中,人们发现在我们的衣食住行中,有很多问题都能用方程的方法来解决。试试看!(出示)
衣:妈妈带50元钱给我买了一件t恤后,还剩下26元。
食:小强去麦当劳,买了一袋薯条和一个l0元的汉堡,一共用了l5元。
住:同学们参加社会实践活动,3个人住一个房间,多少个房间能住102人?
行:公交车上有一些人到谢家湾站时,有13人下车,18人上车,车上还剩36人。
师:你想试哪一个?
生1:我想试“衣”。(生读题)
师:能用方程来表示吗?先写在练习本上,再想一想未知数代表的是什么?
生2:x+26=50
生3:50-x=26
师:这是方程。
生4:x代表t恤的价钱。
生5:我想试“食”。 我是这样写的x+10=15,x代表的是一袋薯条的价钱。
生6:我想试试“行”。
师:你能直接口答吗?
生7:x-13+18=36,x代表的是车上原有的人数。
生7:我想说最后一个“住”。102÷3=x,x代表的是房间数。
师:习惯上都把未知数写在等号的左边。也可以这样表示3x=102
师:刚才我们用方程表达了日常生活中的衣食住行问题,同样,也可以用日常生活来描述方程。
2.(出示)结合生活中的事例解释方程。
①+19=54
②x-14=36
③z-13十15=37
师:选择自己喜欢的来说。
生1:我想说第2个,我有一些钱,买学习用品花了14元,还剩36元。
师:真是个爱学习的好孩子。
生2:我想说第1个,我有一些零花钱,妈妈又给了我19元,一共有54元。
师:要学会合理使用零花钱。
生3:我想说第3个,公交车上有一些人到百货大楼站时,有10人下车,12人上车,车上还剩30人。
师:先下后上,文明乘车。
……
师:听了同学们的描述,老师认为大家确实理解了方程的意义,会把生活和数学联系起来学习了,很好!
设计意图:将数学知识与生活相联系,是学习数学的目的所在。也使学生学习数学的过程中形成技能。在教学中要保证每个学生参与学习活动,针对学习目标和教学重点,具有层次性和开放性,注重教学的实效性。
(三)巩固新知:
1.出示情境图,学生独立完成。说说列出方程的等量关系。
小丽背80首古诗,小芳背x首古诗,小芳说:你比我少背5首
学生能够列出:小芳背古诗首数-5=小丽背古诗首数
或:小芳背古诗首数-小丽背古诗首数=5
即:x-5=80
或:x-80=5
学生同桌交流,说说自己的想法,然后,全班订正。
2.出示自主练习3。
这是一个结合具体情境理解方程意义的题目。
先让学生独立填写等量关系式并列出方程,交流时,重点引导学生结合示意图说说数量关系。
设计意图:加深理解所学的知识,应用所学的知识灵活解决实际问题。
(四)达标反馈
1.下列各式那些是等式?
①45+32=77 ②5÷x=12 ③3x-4=22 ④2×21=42
⑤a+b=90 ⑥÷6
2.按要求写一写。
圆与方程的教案篇2
教学建议
一、知识结构
二、重点难点分析
本节教学的重点是同位角、内错角、同旁内角的概念、难点为在较复杂的图形中辨认同位角、内错角、同旁内角、掌握同位角、内错角、同旁内角的相关概念是进一步学习平行线、四边形等后续知识的基础、
(1)两条直线被第三条直线所截,构成八个角(简称“三线八角”),其中同位角4对,内错角2对,同旁内角2对、
(2)准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截、也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线、
(3)在截线的同旁找同位角和同旁内角,在截线的两旁找内错角、要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系、
(4)在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系、
三、教法建议
1、上节课讨论了两条直线相交以后所形成的四个角,这一节课是进一步讨论三条直线相交后所形成的八个角,所以在教课过程,要运用基本图形结构将所学的知识及其内在联系向学生展示、
2、在讲三线八角概念时,一定要细致地分析、顾名思义,把握住两个关键的环节,“三条线与一条线”,尽量给出变式的图形,让学生分辨清楚、
3、这节课虽然不涉及两条直线平行后被第三条直线所截的问题,但在可能的情况下,将平行线的图形让学生见到,对下一步的学习很有好处,例如,平行四形中的内错角,学生开始接受起来有一定困难,在这一课时中,出现这个基本图形,为以后学习打下基础、
教学设计示例
一、素质目标
(一)知识教学点
1、理解同位角、内错角、同旁内角的概念、
2、结合图形识别同位角、内错角、同旁内角、
(二)能力训练点
1、通过变式图形的识图训练,培养学生的识图能力、
2、通过例题口答“为什么”,培养学生的推理能力、
(三)德育渗透点
从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点、
(四)美育渗透点
通过“三线八角”基本图形,使学生认识几何图形的位置美、
二、学法引导
1、教师教法:尝试指导,讨论评价、变式练习、回授、
2、学生学法:主动思考,相互研讨,自我归纳、
三、重点、难点、疑点及解决办法
(一)生点
同位角、内错角、同旁内角的概念、
(二)难点
在较复杂的图形中辨认同位角、内错角、同旁内角、
(三)疑点
正确理解新概念、
(四)解决办法
引导学生讨论归纳三类角的特征,并以练习加以巩固、
四、课时安排
1课时
一、教具学具准备
投影仪、三角板、自制胶片、
六、师生互动活动设计
1、通过一组练习创设情境,复习基础知识,引入新课、
2、通过学生阅读书本,教师设问引导,练习巩固讲授新课、
3、通过师生互答完成课堂小结、
七、教学步骤
(一)明确目标
使学生掌握“三线八角”,并能在图形中进行辨识、
(二)整体感知
以复习旧知创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知、
(三)教学过程
创设情境,复习导入
回答下列问题:
1、如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系?
2、如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系?
3、如图,三条直线 ab 、cd 、ef 交于一点 o ,则图中有几对对顶角,有几对邻补角?
4、如图,三条直线 ab 、cd 、ef 两两相交,则图中有几对对项角,有几对邻补角?
5、三条直线相交除上述两种情况外,还有其他相交的情形吗?
学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线 cd ,使 cd 与ef相交于某一点(如图),直线 ab 、cd 都与ef相交或者说两条直线 ab 、cd 被第三条直线ef所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系、
?板书】 2.3同位角、内错角、同旁内角
?教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况、认识事物间是发展变化的辩证关系、
尝试指导,学习新知
1、学生自己尝试学习,阅读课本第67页例题前的内容、
2、设计以下问题,帮助学生正确理解概念、
(1)同位角:∠4和∠8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗?
(2)内错角:∠3和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗?
(3)同旁内角:∠4和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗?
(4)同位角和同分内角在位置上有什么相同点和不同点?
内错角和同旁内角在位置上有什么相同点和不同点?
(5)这三类角的共同特征是什么?
3、对上述问题以小组为单位展开讨论,然后学生间互相评议、
4、教师对学生讨论过程中所发表的意见进行评判,归纳总结、
在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征( f 、z 、u )判断问题就迎刃而解、
?教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性、学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的'观点,学生在议议评评的过程中明理、增智,培养了能力、
投影显示(投影片2)
例题?如图,直线de、bc被直线ab所截,(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角?
(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?
[教法说明]例题较简单,让学生口答,回答“为什么”只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太规范,等学习证明时再严格训练、
变式训练,巩固新知
投影显示(投影片3)
?教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是 c ,即 a 和 b 被 c 所截,如 c 和 a 被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提、
投影显示(投影片4)
?教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线”,或是由“三线八角”图形判断同位角、内错角、同旁内角、这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位、这“三看”又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形、如第2题由已知条件结合所求部分,对各个小题分别分解图形如下:
投影显示(投影片5)
?教法说明】学生在较复杂的图形中,对找这一类的同位角,找这一类的内错角,找这一类的同旁内角有一定困难,为此安排本组选择题,有利于突破难点,第2题中学生对 c 、d 两个图形易混淆,要加强对比以便解决教学疑点。第3题让学生掌握三角形中的3对同旁内角。另外本组练习也为后面的练习打基础。
投影显示(投影片6)
?教法说明】本组题目是上组题的延伸,再次突破难点,提高学生思维的广度与深度、学生解决此类题常常因考虑不全面而丢解,要使学生养成全方位多角度考虑问题的习惯,第2题以裁线为标准分类求解,分别把 ab 、bd 、ef 看成是截线找三类角,这样既不遗漏又不重复、
(四)总结、扩展
1、本节研究了一条直线分别和两条直线相交,所得八个角的位置关系,掌握辨别这些角位置关系的关键是分清哪条线是截线,哪些线是被截直线,在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,只要抓住三线中的主线——截线,就能正确识别这三类角、
2、相交直线
3、教师指着图中的一条被截直线,问:“这条直线绕着与截线着与截线的交点旋转,当同位角相等时,两条被截直线是什么关系?”
?教法说明】将所学知识进行归纳总结,加强了知识问的联系,充分体现了所学知识的系统性,最后用是合式小结、可使学生课后自觉地去看预习,寻找答案。系统性,最后用悬念式小结,可使学生课后自觉地去看书预习,寻找答案。
八、布置作业
课本第72页b组第4题、
?教法说明】课本练习穿插在课堂练习中完成,故只留一道提高题,让学有余力的同学继续探究,提高学生思维广度
作业答案
4、答:(1)设 e 是 bc 延长线上的一点,∠ a 与∠ acd 、∠ ace 是内错角,它们分别是由直线 ab 、cd 被直线 ac 截成的和直线 ab 、be 被直线 ac 截成的。
(2)∠ b 与∠ dce 、∠ ace 是同位有,它们分别是由直线 ab 、cd 被直线 be 截成的和直线 ab 、ac 被直线 be 截成的。
圆与方程的教案篇3
解一元一次方程
【教学任务分析】教学目标知识技能
1.用一元一次方程解决“数字型”问题;
2.能熟练的通过合并,移项解一元一次方程;
3.进一步学习、体会用一元一次方程解决实际问题.
过程
方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想.
情感
态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义.
重点建立一元一次方程解决实际问题的模型.
难点探索并发现实际问题中的等量关系,并列出方程.
【教学环节安排】
环节教学问题设计教学活动设计
情
境
引
入牵线搭桥,解下列方程:
(1)-5x+5=-6x;(2);
(3)0.5x+0.7=1.9x;
总结解“ax+b=cx+d”类型的一元一次方程的步骤方法.
引出问题即课本例3
问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求.
学生:独立完成,根据讲评核对、自我评价,了解掌握情况.
探究一:数字问题
例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?
?分析】1.引导学生观察这列数有什么规律?
①数值变化规律?②符号变化规律?
结论:后面一个数是前一个数的-3倍.
2.怎样求出这三个数?
①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?
②列出方程:根据三个数的和是-1701列出方程.
③解略
变式:你能设其它的数列方程解出吗?试一试.比比较哪种设法简单.
探究二:百分比问题(习题3.2第8题)
?问题】某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.这个乡去年农民人均收入是多少元?
?分析】①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;
②因为今年的人均收入比去年的'1.5倍少1200元,所以今年的收入又可以表示为_________元.
③根据“表示同一个量的两个式子相等”可以列出方程为________________________.
解答略教师:引导学生分析.
2.本例是有关数列的数学问题,题要求出三个未知数,这需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生学习探索规律类型的问题.
学生:观察、讨论、阐述自己的发现,并互相交流.
根据分析列出方程并解出,求出所求三个数.
备注:寻找数的排列规律是难点,可让学生小组内讨论发现、解决.
变换设法,列出方程,比较优劣、阐述发现和体会.
教师:出示题目,引导学生,让学生尝试分析,多鼓励.
学生:根据引导思考、回答、阐述自己的观点和认识.
根据共同的分析,列出方程并解出,
(说明:此题目数以百分比、增长率问题可根据实际情况安排,若没时间,可在习题课上处理)
尝试应用
1、填空
(1)有个三位数,个位上的数字是a,十位上的数字是b,百位上的数字是c,则这个三位数是:_______________.
(2)有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为_____________________.
(3)三个连续偶数,设第一个为2x,那么第二个为_______,第三个为______,它们的和是__________;若设中间的一个为x,那么第一个为_____,第三个为______,它们的和是__________.
2.一个三位数,三个数位上的数字的和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?这是最经常出现的一类数字问题:引导学生分析已知各位上的数字,怎么表示这个数,理解为什么不能表示成cba?这是解决这类问题的基础.
通过(3)题理解连续数的表示法,并感受怎么表示最简单.
通过2题让学生理解怎么设?以及怎么设简单(舍都有联系的一个),并感受用未知数表示多个未知量,顺藤摸瓜,从而列出方程的顺向思维方式.
教师:结合完成题目,汇总讲解,重点在于解法.
成果
展示1.通过本节所学你有哪些收获?
2.谈谈你掌握的方法和学习的感受,以及你对应用方程解决问题的体会.学生自我阐述,教师评价鼓励、补充总结.
补偿提高1.有一数列,按一定规律排成0,2,6,12,20,30,…,则第8个数为______,第n个数为_____.
2.下面给出的是20xx年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是( ).
a.69b.54c.27d.40
通过练习,掌握数字问题的分类及不同解法,巩固、体会用方程解决问题的思路和思维方式,学会用方程解决问题.
题目设置是对前面学生所出现的问题进行针对性的补偿和补充,也可对学有余力的学生拓展提高.
根据学生完成情况灵活设置问题.
作业
设计作业:
必做题:课本4、5、第94页6题.
选做题:同步探究.教师布置作业,并提出要求.
学生课下独立完成,延续课堂.
授课教师:
20xx年10月31日
圆与方程的教案篇4
教学内容:教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。
教学目标:
1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。
2、通过小组合作,进一步培养学生探索的意识,发展思维能力。
3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。
教学过程:
一、练习与应用
1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。
2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)
二、探索与实践
1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。
2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨
三、与反思
在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。
四、阅读“你知道吗”可以再查找资料,详细了解。
五、课堂这节课我们复习了哪些内容?你有了哪些收获?
圆与方程的教案篇5
教学目标:
1、 使学生会列一元一次方程解有关应用题。
2、 培养学生分析解决实际问题的能力。
复习引入:
1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:
(1)__________ (2)_________ (3)_________
人们常规定工程问题中的工作总量为______。
2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的`工作效率是_______。
讲授新课:
1、例题讲解:
一件工作,甲单独做20小时完成,乙单独做12小时完成。
问:甲乙合做,需几小时完成这件工作?
(1)首先由一名至两名学生阅读题目。
(2)引导
Ⅰ:这道题目的已知条件是什么?
Ⅱ:这道题目要求什么问题?
Ⅲ:这道题目的相等关系是什么?
(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。
2、练习:
有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?
此题的处理方法:
Ⅰ:先由一名学生阅读题目;
Ⅱ:然后由两名学生板演;
圆与方程的教案参考5篇相关文章: