圆柱与圆锥教学反思8篇

时间:
lcbkmm
分享
下载本文

撰写教学反思可以提高老师的自我指导能力,教学反思是对以往教学的回顾分析,在写作的时候一定要具有针对性,下面是58心得网小编为您分享的圆柱与圆锥教学反思8篇,感谢您的参阅。

圆柱与圆锥教学反思8篇

圆柱与圆锥教学反思篇1

教完《圆柱和圆锥》这一单元内容,我的心总是七上八下的,隐隐约约中感觉到学生可能撑握得不够好。今天上午测试完后,我就迫不及待地批改起学生的卷子来。可是,我越往下批改,我就越觉得难受:之前的所用担心都不幸而言中了,学生考得出乎我意料地差!

下午,我反复研究了学生的试卷,发现学生在答卷中至少存在着以下几个方面的问题:

一、对于表面积而言,学生主要是对题中的圆柱体有几个面搞不清(当然也包括部队分学生审题马虎)和在求各个面的面积时公式运用错误。有些题目是要求圆柱的三个面的面积和,学生只求了两个面的面积和;有些题目要求圆体的两个面的面积和,学生求了三个面的面积和;有的圆柱体的表面积实际是侧面积,而学生却求了三个面的面积和。如有一道题目要求一个无盖的圆柱形水桶的表面积,很多学生求了水桶三个面的面积和,还有一道题是求用铁皮做10节通风管需要多少铁皮,学生也是求2个底面积+侧面积的和乘10 。另外,就是在运用公式来求侧面积时,有的学生却错用了体积公式。

二、对于体积而言,主要存在的问题是在圆锥这里。如有一道题要求一个圆锥体的体积时,很多学生却忘了乘三分之一,把它求成了圆柱的体积。这主要是学生分辨圆柱和圆锥的体积时出现混淆,当然也有相当部分学生是由于审题不认真所造成的。不管怎么样,说明学生对于圆柱体和圆锥体的体积有所混乱,同时在审题上也相当粗心。

三、在整张试卷上,计算是最大的问题。这单元的计算大多是多位小数相乘,计算所得的'积的位数也较多。因此,计算的难度相当大!很多学生见到这些计算就感到头痛,所以计算错误相当多。

纵观这次考试情况,反思这个单元的教学内容和教学方法,我觉得本单元教学内容分两大板块---表面积和体积,但本单元的知识是简单的立体几何知识,很多知识都较为抽象,学生理解起来的确是不容易。因此,在教学时我有意识地结合、围绕下面几点进行教学设计:一是结合生活实际进行教学设计。比如在教圆柱体的认识时,我先要求学生收集身边的圆柱体物体、观察生活中哪些物体是圆柱体,让学生在身边、在生活中学到数学知识。二是加强动手操作,在做中学。比如在教学圆柱体的表面积时,我要求学生动手用硬纸做一个圆柱体,然后进行分解撑握一般的圆柱体有三个表面,使学生理解圆柱体的表面积的含义,从而撑握圆柱体表面积的计算方法。三是注意培养学生良好的学习习惯。在本单元教学中,我有意识地对计算、易做错的题目进行反复的训练。但是,由于本届学生基础的确较差,加上我教学上可能存在着急功好进的思想,勿视了学生的实际情况,因而导致学生测试成绩不好。今后,应好好注意。

圆柱与圆锥教学反思篇2

复习课在知识整理与查漏补缺的同时应该让学生有些新的收获,而不能让孩子们感觉到知识的重复。我始终在想通过这节课到底让孩子们收获些什么?所以在复习内容的选择上,针对历年毕业考试的数学试卷进行分析,有针对性地选择了三道错率很高的试题进行复习。而这些题所体现的知识点都是圆柱与圆锥的关系,所以这节课的教学设计以圆柱和圆锥体积的关系为教学重点,希望能达到举一反三的效果。

一、习题导入,产生学习需求。

一上课,出示了这样的练习题:一个圆柱和一个圆锥的底面积相等、高也相等,它们的体积之和是12.8立方厘米。那么,它们的体积之差是()立方厘米。通过我已有的经验,此类练习一定有部分学生不知如何入手解题。这时候学生就产生了学习求知的需求,再复习本单元的知识点就顺理成章了。

二、通过整理表格、整体把握知识。

首先让学生在已有知识的基础上,形成单元知识表格图。学生做的表格图内容很全面,注意到知识间联系,但本单元所包含的圆柱和圆锥之间既有联系,又有区别,只有把知识点进行对比、区别,才能更好得掌握知识。其次,学生想不到的就需要老师去点拨、引导。我抓住时机,引导学生形成了规范的表格图,既教给了学生学习的方法,又为以后的'归类复习做了铺垫。

三、系统复习,突破重点。

复习本单元的概念主要是为了突破本节课的教学重点,即圆柱与圆锥的体积关系。因此我在复习整理时利用多媒体课件演示圆柱与圆锥的实物,充分体现了在等底等高的情况下,如果圆锥的体积是单位“1”,那么圆柱和圆锥的体积之和就是4/3;如果圆柱的体积是单位“1”,那么圆柱和圆锥的体积之和就是4倍的关系。梳理知识点之间的联系,我在复习三道练习题时采用了“讲、扶、放”的方法逐步解决问题。针对学生层次不同,首先我采用了“讲”的方法。学生在读完题的情况下,我抽象出线段图体现圆柱和圆锥体积的关系,在通过学生之间的交流,正确率达到了90%左右。第二题采用“扶”的方法,先请好学生讲明题意,说出思考点,再做。第3题可以完全“放”,有了前面的基础,最后一题的正确率有了很大的提高。

四、在层层递进的练习中,培养学生运用知识解决实际问题得能力。

练习分为基本练习题、发展性练习题和拓展性练习题三个层次,基本练习题是应用圆柱和圆锥的关系比较直接计算得题目,因此,我让学生先交流再汇报。发展性练习就有了一定难度,在汇报时,让学生展示出所有的解法,体现解法多样化。拓展性题目是综合运用知识解决问题得题目,属于拔高题,主要是针对优生设计的。通过层层练习,培养学生运用所学知识解决实际问题的能力。

通过本课的教学,我认识到在教学中要注意教材编排的特点,要结合本班学生实际情况进行有机整合,有层次地发挥教师的主导作用,体现学生的主体作用。课堂中也留有一些小遗憾:对于学生当堂课生成的资源没有进行很好的利用,在今后的学习中,还要继续积累经验。培养灵活驾驭课堂的能力。

这节研讨课能够完整的呈现出来,要感谢校长的指导以及数学教研组老师们的帮助,更要感谢孙老师,给予我这样一个交流的机会和对这节课的精心指导,在以后的工作学习中,我会更加努力。

圆柱与圆锥教学反思篇3

对于圆柱和圆锥的教学,比较适合的教学方法是学生动手操作,独立探索获取新知,如1、学生自己动手测量圆锥的高,从而找出测量圆锥高的方法。2、动手剪开圆锥的侧面,验证圆锥侧面展开图是一个扇形。3、学生通过做实验,得出圆锥的体积=等底等高圆柱体体积/3,推导出圆锥的体积公式。4、测量学具有关数据,计算体积等。这样不但培养了学生的动手能力,同时在操作过程中学生的创新能力也得到发展。

本节课的基本教学顺序是:激疑——猜想——验证——应用。如,教师先让学生猜想圆柱体和圆锥体体积的关系,然后实验验证。教给学生大胆猜想,并用科学方法验证的数学方法。如,教学“圆柱的体积”这部分内容,可先引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。接着提出如何把圆转化成已学过的图形来计算面积的问题,并让学生拿出预先准备好两个图形学具,按照书上所示的方法将圆分成16等份,剪开后拼成一个近似的'长方形。然后再根据长方形的面积公式推导出圆的面积公式。这样让学生通过拼摆进行迁移,可以使学得轻松、主动。

又如:学习了圆锥体体积的计算方法后,教师设计了这样两个练习,1、计算学具的体积;2、在桌面上有一堆沙子,现在想知道它的体积,该怎样做?让学生运用所学知识解决实际问题,不但培养了学生的实践能力,同时使学生感到学有所用,提高了兴趣。

圆柱与圆锥教学反思篇4

新课之后综合复习了圆柱和圆锥部分的知识以后,练习题也做了不少,可我发现许多同学仍然在某些题上频繁出错,或隔一段时间再做就会出错,我仔细分析了一下,发现他们还是没有真正理解题意,怎么办呢?经过思索,我终于发现,问题的根源在于我,在于我的引导方法不对,如:

一台压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,

(1)前轮转动一周,前进了多少米?

(2)如果每分钟滚动15周,压过的路面是多少平方米?

对于这样一道题,我总觉得学生理解起来应该不难,因此每次只是抽学生回答一下:

第一小题其实是求什么?(底面圆的周长)第二小题求的是什么?(圆柱的侧面积)。并没有多想学生理解不理解。而每每做这道题时效果都十分不理想。后来,经过反复思索,询问学生为什么出错,知道了原因,找出症结。我的引导还是过于含糊了,因此,在下节课中,在讲评这道题中,我随手拿起学生的一本数学书,请孩子们也跟我来,一起演示压路机的前轮滚动的情况,边演示边指:前进了多少米是求的哪一部分的长,而压路的面积是求哪一部分的面积,这样形象直观,学生很容易接受,同时我告诉学生,以后遇到你不理解的情况,也要积极想办法,如画图、利用手中的书本等帮助自己化抽象为形象,从而化难为易,强化思维灵敏度,增强理解力,而不能不加思考去拼凑算式,盲目作题。这样可以进一步提高学生的空间观念。

再如,把一块底面半径2厘米,高6厘米的圆柱形橡皮泥,捏成一个与圆柱底面相等的圆锥形,你知道它的高吗?

大部分学生会通过计算,即先求圆柱形的体积,再利用体积相等的关系,用体积乘3,再除以底面积来做,但,当我把底面半径2厘米去掉以后,学生很难分清到底乘3还是除以3,为此,我很是头疼。

怎么办?背公式吗?学生记不住,也限制了思维的发展。后来,我发现一个孩子在纸上画图,我受到了启发:是啊,当它们体积相等时,学生可以在纸上画图,凭直觉就能发现,当底面积也相等时,要让体积相等就要把圆锥的高画长,圆锥的高肯定是圆柱的3倍,而高相等时,圆锥的底面积应为圆柱底面积的3倍。接着,我又在黑板上画了个相反的情况:试想,当它们体积相等时,如果底面积也相等,而圆锥的高如果说画成圆柱的.1/3,会是什么样子呢?我画上以后,学生哈哈大笑,学生的开怀大笑的同时也轻松掌握了这一方法。同时在画的过程中学生总结出:等体等底的圆锥的高是圆柱高的3倍,等体等高的圆锥的底面积是圆柱底面积的3倍。以后,在这类题上就很少出错了。

通过以上方法,我也深深体会到,数学教学不能光“说”不“做”,要不,学生记住的,也是一些死答案。我们在教学中要善于诱导学生挖掘解题策略与方法,善于总结提炼一些有用的结论,获得高效学习,让学生轻松获得数学知识。

圆柱与圆锥教学反思篇5

学习完《圆柱与圆锥》之后,我发现很多学生容易把圆柱的表面积和体积计算方法混淆;计算圆锥体积时忘乘三分之一;不能正确判断生活中的实际情况。这些问题反映出学生对基础知识的掌握不牢固、计算能力差、对计算公式运用不熟练等。针对此情况,我设计了《圆柱和圆锥的整理与复习》一课。课前放手让学生自主的去收集、整理已学过的知识。课堂上,我力求在教师的引导下,让学生通过回忆、联想、整理、拓展等实践活动,通过表格、框图等形式帮助学生沟通知识间的联系,把学过的知识整合成一个有机的整体,形成合理的`知识体系。充分发挥学生学习的自主性,在交流、讨论、合作、练习中发展学生的空间观念,把课堂还给学生,提高学生运用知识解决实际问题的能力,培养他们自主获取知识与概括知识的能力。

反思本节课,我想在今后的教学中应注意以下三点:

1、平时注意对基础知识的强化训练,没有简单的基础知识的支撑,学生就很难在脑海里构建系统的知识网络,就不能灵活运用知识工具解决问题。

2、在上复习课时,可以将知识点的复习贯穿在习题的训练中,在习题训练中再次提炼知识点和解题方法,这样可以将知识点和解决问题紧密结合,不会出现知识点和解决问题脱节的情况。

3、练习设计是非常重要,要由易到难,层层递进,训练学生举一反三的能力。在练习的内容和要求上具有一定的开放性和挑战性,以激起学生学习的欲望,为每一个学生提供发展的空间。

圆柱与圆锥教学反思篇6

今天,进入第二单元《圆柱与圆锥》的学习,也是学生在小学最后一次学习空间图形。操作、思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材也安排了操作活动的,在每个活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如圆柱的表面积的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形?让学生进行圆柱实物测量算表面积,制作笔筒,深化知识的理解。

我跟去年一样,布置课前前置作业:明天我们学习《圆柱的认识》,回家找一个大一点的圆柱形的物体,用最少的彩纸把这个圆柱包起来。

课一开始,让学生回顾学过的长方体与正方体的特征,你心目中长方体与正方体是怎样的呢?学生从面、顶点、边来交流,交流中其实对圆柱的认识做了很好引导。接着,让学生交流你心目中的圆柱是怎样的?由于学生自己操作过,因此回答非常积极。从底面、高和侧面来交流,很快学生在交流中明确:圆柱的上下两个面是完全相同的圆;侧面是一个弯曲的面,并且粗细均匀;两个底面之间的距离叫做高,有无数条高。我追问着:你怎样证明两个底面大小相等呢?

生1:我在包这个圆柱时,只测量了一个底面直径,剪了两个,正好,因此两个底面大小相等。生2:圆柱可以看成有无数个大小相等的圆片叠起来的,那么两个底面大小一定相等。

生3:在包圆柱时,我测量过两个底面的直径,大小相等。你怎样证明圆柱的高有无数条?生1:我觉得两个底面间有很多的垂直线段。生2:底面有无数的点,两个底面对应的点连接的线段都是圆柱的高了。引导学生通过实验和推理的方法来证明,让学生结合实验操作进行辩析明理,加深学生对圆柱特征的理解。

你怎么知道圆柱的侧面展开是长方形呢?学生通过滚、包圆柱、围圆柱发现了展开的侧面与圆柱的.联系。你能用这张长30厘米,宽20厘米的纸围成怎样的圆柱呢?

生1:我围成的圆柱,圆柱的底面周长是长方形的宽,圆柱的高是长方形的长。

生2:我围成的圆柱,圆柱的底面周长是长方形的长,圆柱的高是长方形的宽。我课件演示,观察一下,你有什么新的发现?学生发现了长方形的面积就是圆柱的侧面积,发现了两个圆柱的侧面积相等,都是这张长方形纸的面积。得出了结论侧面积相等,但它们的底面积不相等,高也不相等。通过这样的练习学生很自然的感悟到圆柱的侧面积就用长方形的长乘宽,也就是圆柱的底面周长乘高。

学生对圆柱认识到位与否直接关系到圆柱表面积和体积的教学,因此从某种意义上说认识圆柱是圆柱单元的重点中的重点。通过包圆柱,一张白纸围圆柱,把传统的剪改成现在的围,使学生对圆柱侧面研究自然过渡到对长方形与围成圆柱 关系的研究上,更加深入,努力实现探究效果的最大化。

圆柱与圆锥教学反思篇7

在以住的教学中,我发现学生概念建立地非常快,而又容易忘记。我想,概念的建立重点应该放在学生自主地探究概念的本质属性,让学生多种感官参与,自由地对提供的实例进行观察、比较,去发现,去揭示。这样着眼于让学生经过自主探究,主动地建构概念,同时也有利于培养学生的思维力和探究精神。在认识圆柱的特征时,让学生拿出圆柱体形的实物,同桌合作,观察讨论,再反馈。学习侧面积时,让学生卷一张长方形的纸片,发现原来长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而得出圆柱的侧面积=底面周长×高。

又如,在推导侧面积公式时,教师要求学生每人拿出一张长方形的纸,并把这张纸卷成一个圆柱。打开,又卷一次。思考:原来长方形的长和宽分别是现在卷成圆柱的什么?生:原来长方形的长是圆柱的周长,宽是圆柱的高。师:真好,那如果要计算你卷成圆柱的侧面积,该怎样算呢?生:长乘以宽。师:也就是圆柱的什么乘什么呢?生:圆柱的底面周长乘高。师:好的。刚才同学们通过自己动手思考,认识了圆柱,还知道了它侧面积的.计算方法。最后教师板书:圆柱的侧面积=底面周长×高。

在这一过程中,让学生观察研究生活中实物,教师讲解示范和学生模仿记忆就少了;学生自主探索与合作交流就多了。如此,学生就有机会用自己的知识经验来表达自己对知识的理解和体验,感悟到数学的奇妙,使每位学生在数学都得到不同的发

圆柱与圆锥教学反思篇8

一、注意生活化抽象到数学化,让学生掌握知识的共同特点

1.对于圆柱物体的认识(教材p10),圆锥物体的认识(教材p23),不容忽视,这一环节是生活化的具体表现,再从生活化的物体抽象到数学化的图形,这又是数学化的具体运用,是知识从形象到抽象的过程。

(图略)

2.抽象出具体的图形后,再让学生观察并说说这些图形的共同特点,更好地认识圆柱(或圆锥)的特征。避免知识形成的片面化。

二、注意计算公式的直观推导,让学生掌握知识的形成过程

知识的形成比结果更重要。这也是课程标准的重要理念。

1.圆柱侧面积计算公式的推导

让学生用二张长方形纸和一张正方形纸分别围成一个圆柱体。将围成的圆柱体的其中二个沿着高剪开,另一具斜着剪开。然后展开,让学生知道圆柱的侧面展开,可能得到一个长方形(或正方形,或平行四边形)。

圆柱的侧面展开可以得到一个长方形,这个长方形的长就是圆柱的底面周长,宽就是圆柱的高。

圆柱的侧面展开可以得到一个平行四边形,这个平行四边形的底就是圆柱的底面周长,宽就是圆柱的高。

2.圆柱体积计算公式的推导

(1)圆柱等分可以拼成一个近似的长方形,这个长方体的底面积就是圆柱的底面积,这个长方体的高就是圆柱的高。

因为长方体的体积=底面积高

所以圆柱体的体积=底面积高

(2)圆柱等分可以拼成一个近似的长方形,这个长方体的长就是就是圆柱底面周长的一半(r),这个长方体的宽就是圆柱的底面半径(r),这个长方体的高就是圆柱的高。

因为长方体的体积=长 宽 高

所以圆柱的体积 =r r h=r h

3.圆锥体积计算公式的推导

同底等高的圆柱与圆锥,让学生用水量一量,观察,讨论与交流以下问题。

同底等高,圆柱的体积是圆锥体积的()倍。圆锥体积是圆柱体积的( )。从而得到圆锥体积的计算公式:

因为圆柱体积=底面积高

所以圆锥体积=1/3底面积高

=1/3sh=1/3r h

三、注意用字母表示已知条件,让学生养成良好的解题习惯

这一举动既是培养良好的解题习惯,也是为中学学习奠定良好的基础。教学实践证明,这一举动还可以提高学生的分析能力,也可以为学生选择恰当的计算公式服务,同时又可避免学生对条件丢三落四,真是一举多得。

例:一个铁皮水桶,高是28厘米,底面直径是20厘米,做这个水桶需要多少铁皮?这个水桶的体积是多少?

已知h=28厘米,d=20厘米,r=10厘米,

s表=dh+r

v柱=r h

四、注意计算公式的书写要求,让学生更好的进行中小衔接

学生升上中学后,不论是数学、物理、化学匀需要书写计算公式。因此作为中、小学衔接,就应该这样做,要求学生带计算公式计算,养成良好习惯,为中学学习奠基。计算中并要求学生保留,既与中学衔接,又减轻学生计算的负担。

例:一个铁皮水桶,高是28厘米,底面直径是20厘米,做这个水桶需要多少铁皮?这个水桶的体积是多少?

人教版六年级下册数学《圆柱与圆锥》教学反思已知h=28厘米,d=20厘米,r=10厘米,s表=dh+r

=20xx+10

=560+100

=660(平方厘米)

五、注意由面到体的变化,提高学生平面到立体的认识

长方形的小旗是一个平面图形,它旋转后所得到的轨迹是一个圆柱体。三角形小旗也是一个平面图形,它旋转后所得轨迹是一个圆锥体。学生看平面图的数据后会求立体图的体积(或表面积),可以提高学生平面图形到立体图形的认识。

六、注意加强知识的联系转化,提高学生的`空间思维能力

1.圆柱体侧面展开转化成长方形

(1)圆柱的侧面展开得到一个长方形,这个长方形的长是12.56厘米,宽是4厘米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?

(2)圆柱的侧面展开得到一个正方形,这个正方形的边长是6.28分米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?

2.圆柱体转化成长方体

(1)圆柱的半径是2分米,高是5分米,将圆柱等分后拼成一个近似的长方体。表面积增加多少?

(2)圆柱等分拼成近似的长方体,这个长方体的长是12.56厘米,高是4厘米,求原来圆柱的侧面积和体积

(3)圆柱等分拼成近似的长方体,这个长方体的宽是5厘米,高是4厘米,求原来圆柱的侧面积和体积

(4)圆柱等分拼成一个近似的长方体,表面积增加100平方厘米,求原来的侧面积。

3.圆柱体截面情况

(1)圆柱的半径是4分米,高是10分米,将圆柱横切成3段,表面积增加多少?

(2)一根圆柱长是8分米,将圆柱横切成4段,表面积增加30平方分米。求原来圆柱的体积。

(3)圆柱的直径是10厘米,高是6厘米,沿着直径和高切开,把圆柱平均分成二半,表面积增加多少?

(4)圆柱的直径是8厘米,沿着直径和高切开,把圆柱平均分成二半,表面积增加80平方厘米,原来圆柱的侧面积、表面积分别是多少?体积是多少?

4.圆柱体侧面增加(减少)

(1)一个圆柱的高是10厘米,如果高再增加3厘米。表面积增加18.84平方厘米,求原来圆柱的侧面积、表面积。体积是多少?

(2)一个圆柱的高是10厘米,如果高减少3厘米。表面积减少18.84平方厘米,求原来圆柱的侧面积、表面积。体积是多少?

5.圆柱和圆锥体积知识变化与联系练习

(1)一个圆柱的体积是24立方厘米,把它削成一个最大的圆锥,要削去( )立方厘米。

(2)一个圆锥体和一个圆柱体底面积和高相等,它们的体积之和60立方厘米,这个圆锥的体积是( )

(3)圆柱和圆锥同底等高。圆柱的体积比圆锥的体积多1.8立方分米,原来圆柱的体积是( )。圆锥的体积是( )。

(4)一块底面半径为3分米,高5分米的圆锥体钢锭,熔铸成一个底面直径为4分米的圆柱形钢材,求这段钢材的长

(5)一个底面直径是24厘米的圆柱形玻璃杯装有水,水里浸没一具底面直径为12厘米,高8厘米的圆锥形钢块,当钢块从水中取出时,杯中的水会下降多少厘米?

(6)一个瓶子内直径8厘米,装入10厘米高的水后,盖好瓶子倒过来(如图),量得空余部分的高是2.5厘米,求这个瓶子的容积是多少毫升?

圆柱与圆锥教学反思8篇相关文章:

8~9的分与合教案与反思6篇

8~9的分与合教案与反思通用6篇

8~9的分与合教案与反思最新5篇

8~9的分与合教案与反思推荐7篇

幼儿园家长半日开放活动总结与反思参考8篇

盘古开天地反思教学反思8篇

赵州桥反思教学反思参考8篇

美术教学教学反思模板8篇

黄河教学反思8篇

colours教学反思8篇

圆柱与圆锥教学反思8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
83554