分数乘分数的教案最新7篇

时间:
Lonesome
分享
下载本文

我们的教案旨在激发学生的创造力和探究精神,教案是教师与学生之间沟通的桥梁,下面是58心得网小编为您分享的分数乘分数的教案最新7篇,感谢您的参阅。

分数乘分数的教案最新7篇

分数乘分数的教案篇1

教学目标:

1.知识与技能:结合具体事例,经历画线段图分析数量关系、找等量关系并用方程解答简单分数除法问题的过程。

2.过程与方法:能用方程解答"已知一个数的几分之几是多少,求这个数"的实际问题。

3.情感与态度:认识到许多分数除法问题可以借助方程来解决,能够表达解决问题的过程。

教学重点:

学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。

教学难点:

学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。

教学准备:

小黑板

教学过程:

一、复习

1.口算

15 x=5 34 x=6 3x=910

5x=1011 12 x=89 23 x=67

2.口答下列各题的数量关系式。

⑴某数的35 是36。

⑵全厂人数的58 是210人。

⑶完成了300个,刚好是计划的14 。

⑷一个数的3倍是1225 。

3.解答:小营村全村有耕地75公顷,其中棉田占35 。 小营村的棉田有多少公顷?

生练习,提问:这道题为什么用乘法计算?把谁看作单位"1"?

二、探究新知

师:请看黑板,同学们开联欢会布置会场,用的红气球占总数的49 ,一共用了多少个气球?

师:指名读题,谁能找出这道题的已知条件和所求问题。

师:题中"总数的49 "这个条件你是怎样理解的?

师:边画图边理解

师:请同学们看图说说题里的已知条件和问题。

师:观察图示,你发现数量间有怎样的相等关系。

师:你是根据什么列出等量关系的?(同桌讨论)

师:在这个等量关系中,哪个量是已知的?哪个量是未知的?

师:未知的可以设为x,根据等量关系我们可以用列方程的方法来解答,同学们自己能解答吗?(指名板演,其他自练,并提醒学生做完要检验。)

师:做完的同学把书打开72页,对照例题检查自己做对了吗?谁愿意说说你是怎样检验的?

师:同学们是用把原方程的解代入原方程看方程左右两边是否相等的方法检验的,其实还可以根据题意进行检验,我们可以计算28是不是占x的 49 ,如果是就说明你的方程不但列对了,而且解对了。如果不是就说明有错误出现,好及时改正。

师:回顾例题的学习过程,你认为解题关键是什么?

师:同学们真聪明!自己不但能学懂知识,还能学以致用,解决实际问题。

师:其实我们今天所学的知识不光能解决有关联欢会的问题,还能解决生活中的许多实际问题,比如说"十、一假期,老师上街买了一套衣服,裤子75元,是上衣价钱的23 ,"应用今天所学的知识,你能求出一件上衣多少钱吗?(能)

指名板演,其他自练。

三、巩固练习

试一试

四、全课

师:求单位"1"的几分之几用乘法,已知一个数的几分之几是多少,求这个数用除法。

五、作业

教学后记:

找准单位"1"的量,掌握题中的数量关系是解答分数问题的关键,教学例题时。我先让学生找单位,写出数量关系,让他们根据数量关系列方程,掌握还不错。

分数乘分数的教案篇2

练习目标:

1在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;

2运用所学的分数除法的知识,解决相应的实际问题.

练习过程:

一、基础知识练习:

1、计算:

⑴294311522/232

⑵32426179713/154

(学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的.)

2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的地方?

引导学生小结:除以一个不等于0的数,等于h这个数的倒数.

二深入练习

1、计算下面各题,比较它们的计算方法.

5/6+26-26262/3

2、

(让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)

根据学生的回答,教师作如下板书:

一个数除以小于1的数,商大于被除数;

一个数除以1,商等于被除数;

一个数除以大于1的数,商小于被除数。

三、解决问题:

练习八第7至8题。

第7题学生独立解答。

第8题学生解答时提示学生需要先统一单位。

小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

四、作业练习:

1、33页第5、9题。

2、一个商店用塑料袋包装120千克水果糖.如果每袋装1/4千克,这些水果糖可以装多少袋?

五、教学反思:

分数乘分数的教案篇3

教学内容:

苏教版《义务教育教科书·数学》五年级下册第52页例1及相应的练习。

教学目标:

1.学生初步理解单位“1”和分数单位的含义,能结合单位“1”描述具体分数的意义。

2.学生经历分数意义的概括过程,进一步理解分数的意义,培养学生初步的观察、比较、分析、综合、抽象、概括等能力。

3.学生在用分数描述和解释生活现象的过程中,体会分数与生活的密切联系,增强合作交流的意识以及学好数学的信心。

教学重点:

理解单位“1”的含义,概括分数的意义。

教学难点:

结合具体情境理解分数的意义。

教学过程:

一、联系生活情境,建立单位“1”概念

1.同学们,数学课当然离不开数,看这个数认识吗?(幻灯片出示1)

2.这可是大名鼎鼎的1,它能表示生活中的许多事物。

3.瞧!一个苹果,一张桌子,一个正方形,一把尺子…

4.你会用1表示生活中的事物吗?

5.学生一一列举。

6.能说完吗?是呀,说也说不完!的确1是万能的,不过听大家刚才说的,一个,一个,好像小朋友们也能说得出来,谁能说点高级点的1,像我们五年级的水平。

7.学生一一列举,适时点评,他说得与刚才同学说得有什么不同?

8.是呀!刚才大家说的是一个物体或一个计量单位,他说得是由许多物体组成的一个整体。1的内涵更加丰富了。

9.谁还能接着说,能说完吗?同样也说不完。

:同学们,看来自然数1不仅可以表示一个物体,一个计量单位,还可以表示由许多个物体组成的整体。其实这个1在我们数学上还有一个更加专业的名字:单位“1”。

设计意图从学生最熟悉的自然数1入手,体会数字1在现实生活情境中的应用,通过用数字1描述生活中事物的活动,让学生体会到数字1的应用范围,一个物体、一个计量单位、许多个物体组成的一个整体都可以用自然数1来表示,从而揭示这其实就是数学中的单位“1”,每一种新事物、新名称的学习我们都要借助学生已有的生活经验,从学生已有的数学经验中自然地引出单位“1”,水到渠成。

二、借助数学活动,深刻理解单位1

1.大家来看,中秋佳节刚过,品尝月饼没?赵老师带来了…,个月饼,既然1能表示许多的事物,那么这4个月饼能看成单位“1”吗?

2.明明这是4个月饼,你怎么用1来表示呢?有什么办法让大家一眼看起来就是1.

3.如果我们把4个月饼看做单位“1”,以它为标准,那么…

………( )

………( )

……( )

……( )

:数学这门学科就是这样,不仅要认真观察,还要灵活思考,才能得出正确的结论。

4.刚才我们把4个月饼看做单位“1”,理解了4个月饼的,继续看大屏幕,这些能看做单位“1”吗?请你表示出这单位“1”的,请在活动单上分一分、涂一涂。

5.纠错、展示学生作品

(1) (2)

(3) (4)

6.抽象本质。同学们,观察大家表示出的,你有什么发现呢?

预设:

(1)只要把单位“1”平均分成4份,表示其中的3份,就可以用分数来表示。

(2)与分的东西没有关系,分的形状也没有关系!

7.看来表示单位“1”的,与什么有关?与什么无关呢?

8.同学们,这就是分数的意义本质所在,通过刚才一段时间的学习,谁来说说什么是分数呢?

揭示分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

9.既然与分的东西无关,那么我们可以把一条线段看做单位“1”吗?你能在这个单位“1”里表示出吗?

10.展示学生两种想法

(1)当成线段(2)看成数轴

第二种进行:这位同学不仅找到了,关键是它没有把单位“1”看成是一条普普通通的线段,而是把它想成了数学中的数轴,真了不起!

11. 在哪里呢?这里是多少?这里是?,怎么写的是1,=1吗?1如果看成数轴,你觉得1后面还有数吗?2在哪里?3呢?1和2的中间呢?1和2的这里呢?

12. 里面有4个,也就是单位“1”里有4个,刚才的单位1里有几个呢?借助刚才的示意图逐一进行验证!

13.揭示分数单位:

:同学们,像这样,把单位“1”平均分成若干份,表示其中一份的数就叫做分数单位,所以就是这些分数的分数单位。

设计意图 这一环节分两步进行,分数的意义必须建立在学生深刻认识的基础上,通过关注让学生发现分数存在的'规律现象,抽象出分数的基本特征,提取概念的本质属性,让学生试着说说什么样的数叫做分数,是抽象基础上的概括。在不断认识中建立分数意义的模型,通过观察验证,发现只要平均分成4份,其分数单位就是,理清分数单位与平均分之间的关系,从而更好地理解分数单位。

三、深刻认识分数单位,完成巩固练习

1. 的分数单位?的分数单位?的分数单位?

2.你们怎么回答的这么快?我还没有说出分子呢?你们怎么就知道分数单位了?

3.:看来,我们学习数学,能出表面现象中发现问题的本质,就可能处出现事半功倍的效果。你们的思维真好!

4.来快速完成一组练习吧!看谁有对又快!

5.巩固练习

用分数表示各图中的涂色部分,并写出每个分数的分数单位,以及有几个这样的分数单位。

设计意图任何一节数学课,脱离不了基础行的练习,练习是对已学知识的巩固提升,通过一组题目的练习,增强学生对分数意义以及分数单位的理解,同时把单位“1”里面有几个分数单位凸现出来,为随后的带分数学习做好铺垫。

四、深化对分数意义的理解

(1)黄山风景区面积约占黄山山脉的

(2)黄山年均雨日大约是全年的

怪不得!这大概就是红树铺燕云、黄山云成海的奇观缘由吧!

设计意图从数学中回到现实生活中,学生从不同角度丰富对单位“1”的理解,有助于提升对分数意义的认识水平,促进认知结构的建立和完善。

五、反思

同学们,你们活跃的思维使得数学课堂熠熠生辉,相信大家,在每一节数学课中,无论从知识上、还是数学方法上,或是学习态度上都会有新的收获与发现,那么,这节课呢?有没有新的思考。

出示思考问题:

在刚才的学习过程中

1.哪个知识点的学习让你记忆犹新?

2.你有没有领悟到一些不错的数学学习方法?

3.学习数学重要的一些品质有所体会吗?

4.或许,你还有别的……

我相信,这些都来自于你们最真实的想法,无论学习还是生活,学会思考,终究成功!出示:学习知识要善于思考,思考,再思考。——爱因斯坦

设计意图如果在日常的教学中,能时常带领孩子们从知识、思考方法、学习态度等方面进行有效的反思,这将是对孩子的成长非常有益的,因此,不让学生进行盲目的反思,而是根据问题进行针对性的思考,这样更有助学生对于学习过程进行深度思考。

分数乘分数的教案篇4

教学目标 :

1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

教学重点:

掌握分数乘分数的计算方法,并能熟练计算。

教学难点:

理解分数乘分数的乘法意义及算理。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1. (课件出示一个正方形)这个正方形我们可以用数字1表示。现在涂色部分是它的几分之几? ( )

2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )

3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

?设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】

二、合作探究(小组合作,解决问题)

出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

(一)探究几分之一乘几分之一的算理算法

1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)

求一个数的几分之几,我们可以用乘法来计算。

2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。

3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

4. 进行交流反馈

重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固

把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(25)份,取其中的一份,就是 公顷。

分数乘分数的教案篇5

本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。

分数与整数相乘

用乘法求几个相同分数的和(例1)

用乘法求整数的几分之几是多少(例2)

求一个数的几分之几是多少的实际问题(例3) 练习八

分数乘分数

分数乘分数(例4、例5)

分数连乘(例6) 练习九

倒数

倒数的意义,求倒数的方法(例7) 练习十

整理与练习

教材在编排上有以下特点。

第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。

乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。

第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。

先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。

整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。

分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。

第三,编排倒数知识,为分数除法作准备。

分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

一、 例1着重教学分数与整数相乘的算法。

首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。

例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。

例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。

二、 例2着重教学用乘法求一个数的几分之几是多少。

10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。

在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:

首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。

然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。

沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。

练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。

例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。

三、 例3用分数乘法解决实际问题。

例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。

解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。

比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。

第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。

四、 例4、例5构建分数乘法的计算法则。

分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。

构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。

例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用14计算,1/2的3/4可以用14计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以14=1/8、14=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。

例5继续体会分数乘分数的算法。已给出了两道算式25和25,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如25是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是25的积。又如25是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到25的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。

两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。

第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。

五、 例6教学分数连乘的算法和技巧。

例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。

例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。

六、 例7教学倒数的知识。

倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。

教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。

求已知数的倒数分三个层次教学: 先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。

第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的方法。

分数乘分数的教案篇6

活动目标:

1、通过尝试性的操作活动,学习将一个整体分成相等的两份,感知整体和部分的关系。

2、愿意参与讨论活动,探索不同材料的二等分方法。

3、体验数学活动的乐趣。

4、引导幼儿积极与材料互动,体验二等分。

5、激发了幼儿的好奇心和探究欲望。

活动准备:

1、分别在两块黑板上布置小熊宝宝和小熊贝贝及它们的大盘子。

2、长方形、正方形、圆形、椭圆形彩色纸若干,剪刀人手一把。

3、每人一份食物:饮料、糖果、花生、方形面包片、豆腐干、干果

4、人手一套工具:两个小盘子、两个小量杯、纸条、线、尺、餐??

活动过程:

一、导入活动,引起幼儿的兴趣。

师:熊妈妈有两个孩子,一个叫小熊宝宝,另外一个是小熊

贝贝,这一天熊妈妈买了一些各种口味的饼干,小熊宝宝和小熊贝贝吵着要吃到每种口味的饼干,这可难住了熊妈妈,怎么办呢?

二、第一次尝试:二等分长方形

1、请幼儿尝试将长方形分成一样大的两份。

师:现在请小朋友试一试,看能用什么方法把长方形的饼干

分成一样大的两份,好吗?

2、幼儿尝试操作,将长方形二等分,教师巡回观察幼儿

的操作,鼓励幼儿想想有几种分法。

3、尝试操作后提问

(1)师:请**小朋友告诉大家,你是怎么分的?

怎么知道分出来的两份是一样大的?根据幼儿的回答教师边操作课件边提问:原来长方形的饼干和现在分出来的一份饼干,谁大谁小?

(2)小结:像这样把一件东西分成一样大的两份叫

做二等分,二等分后的每一份都是一样大的。而且每一份都比原来的整体小,整体比部分大。

4、师:现在我们把二等分后的饼干分别送给小熊宝宝和小熊贝贝吧!(幼儿把分好的饼干分别放进宝宝和贝贝的大盘子)

三、第二次尝试:二等分正方形、圆形、椭圆形

1、熊妈妈这里还有许多各种形状的饼干要分给宝宝和

贝贝,你们愿意再来帮熊妈妈分一分吗?记住要二等分噢,不然宝宝和贝贝会不高兴的。

2、幼儿自由选择图形进行二等分操作

3、幼儿将各种形状二等分后,贴到宝宝和贝贝的盘中。

四、第三次尝试:实物二等分

1、师:为了感谢小朋友,熊妈妈为小朋友准备了好多好吃

的东西,有、面包、豆腐干、花生、糖果、饮料……可以用什么方法把它们分成相等的两份呢?

2、师带领幼儿集体观察、交流:你分的是什么?使用??

么方法来分的?(用了什么工具)分得对吗?为什么?有不同的方法吗?哪个方法更好?为什么?

五、师:现在让我们拿着自己二等分后的食物一起回教室和你的好朋友一起分享吧!

活动反思:

在我园“园本教研”中,我有幸参加了“一课多研”活动,我把大班的“二等分”这一活动经过了“设计-教学-再设计-再教学”,其中自己也经历了不断的反思。

在数学活动中,幼儿是通过活动、通过与材料的相互作用,发现和建构数学关系的,教师设计的材料是否适宜直接关系到幼儿的操作兴趣,探索效果也直接影响教育目标的达成。

1、紧扣活动目标,遵循数学知识内部的逻辑规律操作

材料的特点以及由这些特点规定的活动方式往往决定幼儿能获得什么样的学习经验,获得哪些方面的`发展,所以“操作材料应暗含幼儿通过操作能够达到适宜的教育目标的内容。”在第一次设计的二等分图形材料,请幼儿帮忙分窗纸,通过这样的操作,幼儿能将材料分成两份,但目的性很不强,对于相等的两份概念不清,整体与部分也难搞懂,贴的窗花较为凌乱,所以在设计操作材料时,教师要从目标出发,把教育意图和要求融入到每一种材料中,充分挖掘材料的潜在价值,发挥其最大的功效,如在第三次设计的方案中,把图形材料设计成饼干及设置的给熊哥俩分饼干的情境,幼儿把二等分的概念深入理解后,把饼干整整齐齐的分别置于两个盘中。

2、满足不同发展水平幼儿的操作需要

操作材料的难易度应适中,既不能让幼儿轻而易举地得到答

案又不能使幼儿觉得太难,失去操作兴趣。

在活动中,提供的材料难度应层层递进,由简到难,在“二

等分”这一活动中由让幼儿尝试多种方法二等分一个图形——用多种方法二等分其他图形——二等分不同实物。

由于同一年龄班的幼儿的发展水平并不平衡,所以应从不同

幼儿的发展水平及“最近发展区”出发,允许他们从不同的起点,按不同的发展速度选择操作材料,逐步达到目标。

3、要多样化

操作材料的多样化有利于幼儿独立思考,相互学习,获得更

多的信息,在活动中,我为幼儿提供的实物,准备了颗粒状态的、液体状态的、固体形态的,这些材料难易程度不同,供不同幼儿选择,幼儿也可选择不同的材料。

另外,数学知识存在一定联系,在设计操作材料时,我提供

幼儿的测量工具,以激发幼儿回忆先前的学习经验,调动幼儿的操作经验,促进了学习能力的迁移。

分数乘分数的教案篇7

教学目标:

1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。

2、在学习过程中,培养学生的思维能力和应用意识。

3、体会数学与生活的密切联系,进一步增强学好数学的信心。

教学重点:

理解单位“1”和分数的意义。

教学难点:

理解单位“1”和分数的意义。

教学准备:

教具准备:自制教学课件

学具准备:小棒、练习纸

设计意图:

?小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在课前通过与学生的谈话引出分数后,短短的一句“关于分数,你已经知道了什么”唤起学生已有的知识经验,找到了新知与旧知的链接点,接着又借助媒体教学手段向学生介绍分数的由来,适时渗透了数学文化思想。使学生的思维开始了“起跑”。

作为学生学习的组织者、引导者与合作者,我力求引在核心处,拨在关键处,让学生自主探究、补充概括,借助于课堂这个思维“运动场”,不着痕迹地引导学生理解分数的真正含义。从引导学生“起跑”到“加速”,最后“冲刺”,水道渠成,促使每个学生获得成功的体验。

教学过程:

一、谈话导入

1、通过师生之间的谈话引出分数。

2、关于分数,你已经知道了什么?

3、提出要求:

师:从刚才的表现可以看出**班的同学们都很棒。呆会儿合作时,先听清楚老师的要求再动口说一说、动手做一做,可以吗?

二、分数的产生

1、板书课题

师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。

师:你知道古人是怎样表示分数的吗?让我们一起来看一看。

三、理解分数的意义

1.理解一个整体

(1)、找出各种材料的1/4。

师:今天老师带来了一些材料,你能分别找到它们的四分之一吗?

师:那就请同学们开动脑筋,分一分、涂一涂,找出它们的1/4。

然后同桌之间说一说,你是如何找到它们的1/4的。听明白了吗?

(2)、汇报交流

教师进行规范:

生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。

生:我是把这条线段平均分成4份,这样的一份就是这条线段的1/4。

突出整体:

师:这里的1/4是如何得到的呢?

生:我把4个苹果平均分成4份,这样的一份就是这个整体的1/4。

师:这是他的想法,还有不同想法吗?

生:把4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

进行知识迁移:

生:我是把8个三角形看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

(3)小结:

提问:刚才我们在不同的材料里找到了四分之一,找的过程中有什么相同的或不同的地方。

不同点:材料不同。

跟进:但我们都把这些材料看成了一个整体,这个整体可以是一个物体也可以是多个物体。

相同点:都是把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。

2、理解单位“1”。

(1)深化理解一个整体

学生自主创作:

师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。

交流汇报:

师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)

师:一根可以用四分之一表示、两根也可以用四分之一表示、三根、四根都可以用四分之一表示。也就是说把什么平均分成4份,每份就可以用1/4进行表示呢?——一个整体

学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体

(2)揭示单位“1”。

师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)

师:刚才我们通过动手画一画、分一分等方法,深入理解了四分之一的含义。下面我们一起做一个猜数游戏,准备好了吗?

师:如果一个菠萝用三分之一表示,他是把什么看作单位1呢?——果然如此。

师:如果2个橘子用五分之一来表示,她的单位1,又是多少呢?你是怎样想的?

师:同学们真是了不起!已经能很快地找到单位1了。

3.理解分子、分母的含义

(1)找其他分数

师:刚才我们把4个苹果、8个三角形分别看作单位1,平均分成4份,找到了1/4。现在请你继续观察,还能发现其他的分数吗?

那就请同学们动手涂一涂,用阴影表示出这个分数,并把这个分数写在下方,再和你的同桌说一说这个分数的含义。

(2)汇报交流

师:谁愿意和大家交流一下你所找到的分数?

生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。

(3)比较:

师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。(课件使用说明:点击课件出现:

师:观察这些分数,你发现了什么?

生:分母都是4

师:为什么分母都是4呢?

生:因为都是平均分成了4份

师:把什么平均分成4份?——单位“1”。

师:要是单位“1”平均分成5份,分母是几呢?——5。平均分成6份——分母就是——6。

师:分母其实就是表示——平均分的份数

师:同学们的观察力可不一般呐。还有什么发现吗?

生:分子各不相同,都差1

师:分母为什么会不一样呢?

生:取的份数不同

师:平均分成4份,取这样的一份就是1,两份就是——2,三份就是——3

师:分子其实就是表示——取的份数

师:同学们不仅观察能力强,分析、概括能力也很出色。

4.揭示分数的意义。

(1)逐步理解分数的意义

师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。

现在老师再写一个分数5/9,你能说说它的含义吗?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:已经会用单位1来说了,真好。谁也愿意来试一试呢?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:说的真好。如果不是平均分成9份,板书5/(),那么它的含义是什么呢?

生:把单位“1”平均分成很多份,取这样的5份,就是5/()。

师:很多份可以是几份?——2份,3份……

师:我们可以用一个词来表示(板书:若干份)

师:如果取的份数也不是5份了,板书()/(),那么这个分数的含义是什么呢??

生:把单位“1”平均分成若干份,取这样的若干份,就是()/()

师:可以取这样的一份,也可以取这样的……几份。

小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。

(2)理解分数单位

师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。

1/4,2/4,3/4,4/4的分数单位就是——1/4

师:5/9的分数单位?

生:1/9

师:5/99

生:1/99

师:()/1000

生:1/1000

师:老师都还没说分子呢,你怎么就知道分数单位了?

生:分数单位就是表示一份的数

师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之??

师:那3/4里有几个这样的分数单位呢?5/9里有几个这样的分数单位呢?

5.总结:今天这节课,我们一起合作学习了什么?你有什么收获?

四、练习巩固。

师:看来同学们的收获还真不少。请同学们在括号里填上适当的分数。

1.填一填

(1)说说3/5的意义

(2)同意吗?

(3)3/8的分数单位是多少?有几个这样的分数单位。

2、点击生活

哪位同学愿意来读一读,并说说其中分数的意义。

(1)、我校五年级学生约占全校学生的1/6

(2)、长江约3/5的水体受到不同程度的污染

师:还有几分之几的水体没受污染呢?

师:受污染水体多还是没受污染的水体多?——怎么想的?

师:有什么想说的?——要保护环境

师:看来同学们很有环保意识。那你希望,长江受污染的水体占长江水体的几分之几呢?

师:大家都有美好的希望,那就让我们拿出实际行动,共同来保护环境。

(3)、姚明的头部高度约占他身高的1/8

师:我们的身体中还蕴藏着很多分数,有兴趣的同学课后可以去查一查资料。

五、总结全课、质疑问难

师:这节课我们学习了什么?你有什么收获?还有什么问题?

分数乘分数的教案最新7篇相关文章:

父亲的爱演讲稿最新7篇

单片机的实训心得最新7篇

讲自己的演讲稿最新7篇

关于保护的演讲稿最新7篇

家的读书心得1000字最新7篇

企业的竞聘演讲稿最新7篇

实习老师的心得最新7篇

疫情的演讲稿最新7篇

仓库的个人工作总结最新7篇

致诚信的演讲稿最新7篇

分数乘分数的教案最新7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
35295