初一数学有理数教案8篇

时间:
Lonesome
分享
下载本文

教案是为了说好课而准备的文字材料,教案是教师教学工作的重要组成部分,下面是58心得网小编为您分享的初一数学有理数教案8篇,感谢您的参阅。

初一数学有理数教案8篇

初一数学有理数教案篇1

一、教学目标

知识与技能:

①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。

②会进行有理数乘法运算。

③了解有理数的倒数定义,会求一个数的倒数。

过程与方法:

①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。

②提高学生的运算能力

情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。

二、教学重点和难点

重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

难点:有理数乘法中的符号法则。

三、教学过程

(一)创设问题情景,激发学生的求知欲望,复习旧知,导入新课

前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法。同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。4天后,甲、乙水库各自水位的总变化量是多少?

如果用正号表示水位的上升、用负号表示水位的下降。那么,4天后,甲水库水位的总变化量是:3+3+3=34=12㎝

乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)4=-12㎝引出课题:有理数的乘法

(二)学生探索新知,归纳法则

学生分为四个小组活动,进行乘法法则的探索

设蜗牛现在的位置为点o,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:

(1)向右爬行,3分钟后的位置?

(2)向左爬行,3分钟后的位置?

(3)向右爬行,3分钟前的位置?

(4)向左爬行,3分钟前的位置?

(学生思考后回答)要确定蜗牛的位置需要知道:距离和方向。

为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。

(1)情形一:蜗牛在现在位置的右边6㎝处。式子表示为:

(+2)(+3)=+6

数轴表示如右:

(2)情形二:蜗牛在现在位置的左边6㎝处。式子表示为:(-2)3=-6

数轴表示如右:

(3)情形三:蜗牛在现在位置的左边6㎝处。式子表示为:(+2)(-3)=-6

数轴表示如右

(4)情形四:蜗牛在现在位置的右边6㎝处。式子表示为:(-2)(-3)=+6

数轴表示如右:

仔细观察上面得到的四个式子:

(1)(+2)(+3)=+6

(2)(-2)3=-6

(3)(+2)(-3)=-6

(4)(-2)(-3)=+6

根据你对乘法的思考,你得到什么规律?

(三)学生归纳法则

a.符号:在上述4个式子中,我们只看符号,有什么规律?

(+)(+)=()同号得

(-)(+)=()异号得

(+)(-)=()异号得

(-)(-)=()同号得

b.任何数与零相乘,积仍为。

(四)师生共同用文字叙述有理数乘法法则。

归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

(五)运用法则计算,巩固法则。

例1.计算:(1)(-5)(2)(-7)(3)(-3)(4)(-3)(-)

引导学生观察、分析例1中(4)小题两因数的关系,得出:有理数中仍然有:乘积是1的两个数互为倒数。

例2.见课本p30页

(六)分层练习,巩固提高。

(1)计算(口答):

①②③④

⑤⑥⑦⑧

四、课题小结

(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。

(2)如何进行两个有理数的乘法运算:先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。

五、作业布置

课本p30页练习1,2,3.

初一数学有理数教案篇2

教学目标:

知识能力:

理解有理数的'概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。

过程与方法:

经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。

情感态度与价值观:

通过本课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:

掌握有理数的两种分类方法

教学难点:

会把所给的各数填入它所属于的集合里

教学方法:

问题引导法

学习方法:

自主探究法

一、情境诱导

在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。

1.有下面这些数:15,9,-5,2/15,8,0.1,-5.22,-80,0,123,2.33

(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?

(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?

把整数和分数起个名字叫有理数。(点题并板书课题)

二、自学指导

学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

附:自学提纲:

1.___________、____、_______统称为整数

2._______和_________统称为分数

3.__________统称为有理数

4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、2中,整数:、分数:__________;正整数:__________、负整数:__________、正分数:__________、负分数:__________.

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.b

2.判断下列说法是否正确,并说明理由。

(1)有理数包括有整数和分数.

(2)0.3不是有理数.

(3)0不是有理数.

(4)一个有理数不是正数就是负数.

(5)一个有理数不是整数就是分数

3.所有的正整数组成正整集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):

教学设计

正数集合:{ …}负数集合:{ …}

正整数集合:{ …}负分数集合:{ …}

4.下列说法正确的是()

a.0是最小的正整数

b.0是最小的有理数

c.0既不是整数也不是分数

d.0既不是正数也不是负数

5、下列说法正确的有()

(1)整数就是正整数和负整数

(2)零是整数,但不是自然数

(3)分数包括正分数和负分数

(4)正数和负数统称为有理数

(5)一个有理数,它不是整数就是分数

五、总结与反思:

通过本节课的学习,你有什么收获?

六、作业:

必做题:课本14页:1、9题

初一数学有理数教案篇3

【学习目标】

1.掌握有理数的混合运算法则,并能熟练地进行有理数的加、减、乘、除、乘方的混合运算;

2.通过计算过程的反思,获得解决问题的经验,体会在解决问题的过程中与他人合作的重要性;

【学习方法】

自主探究与合作交流相结合。

【学习重难点】

重点:能熟练地按照有理数的运算顺序进行混合运算

难点:在正确运算的基础上,适当地应用运算律简化运算

【学习过程】

模块一预习反馈

一、学习准备

1.四则(加减乘除)混合运算的顺序:先算_______,再算_______,如有括号,就先算__________.同级运算按照从___往___的顺序依次计算。

2.有理数的运算定律:__________________________________________________.

3.请同学们阅读教材p65—p66,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。

《2.11有理数的混合运算》课后作业

9.用符号“>”“

42+32________2×4×3;

(-3)2+12________2×ok3w_ads("s002");

《2.11有理数的混合运算》同步练习

5、小亮的爸爸在一家合资企业工作,月工资2500元,按规定:其中800元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过500元的部分按5%的税率;超过500元不超过20xx元的部分则按10%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?

初一数学有理数教案篇4

教学目标:

1、熟练有理数的乘法运算并能用乘法运算律简化运算。

2、让学生通过观察、思考、探究、讨论,主动地进行学习。

3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。

教学重点和难点

教学重点:正确运用运算律,使运算简化

教学难点:运用运算律,使运算简化

教学过程

一、学前准备

1、下面两组练习,请同学们选择一组计算。并比较它们的结果:

请以小组为单位,相互检查,看计算对了吗?

二、探究新知

1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。

2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?

3、归纳、总结

乘法交换律:两个数相乘,交换因数的位置,积相等。

即:ab=ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等

即:(ab)c=a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

即:a(b+c)=ab+bc

三、新知应用

1、例题

用两种方法计算(+-)12

2、看谁算得快,算得准

1)(-7)(-)2)915.

四、课堂小结

怎么样,这节课有什么收获,还有那些问题没有解决?

乘法交换律:两个数相乘,交换因数的位置,积相等。

即:ab=ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

即:(ab)c=a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

即:a(b+c)=ab+bc

五、作业布置

初一数学有理数教案篇5

教学目标:

1、明白生活中存在着无数表示相反意义的量,能举例说明;

2、能体会引进负数的必要性和意义,建立正数和负数的数感。

重点:

通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

难点:

对负数的意义的理解。

教学过程:

一、知识导向:

本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

二、新课拆析:

1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。如:0,1,2,3,…,,

2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。

如:汽车向东行驶3千米和向西行驶2千米

温度是零上10°c和零下5°c;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。

一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°c表示为10°c,零下5°c表示为-5°c概括:我们把这一种新数,叫做负数,如:-3,-45,…过去学过的那些数(零除外)叫做正数,如:1,2.2…零既不是正数,也不是负数例:下面各数中,哪些数是正数,哪些数是负数,1,2.3,-5.5,68,-,0,-11,+123,…

三、阶梯训练:

p18练习:1,2,3,4。

四、知识小结:

从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

五、作业巩固:

1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;

2、分别举出几个正数与负数(最少6个)。

3、p20习题2.1:1题。

初一数学有理数教案篇6

一、知识要点

本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:

1、大于0的数叫做正数。

2、在正数前面加上负号“-”的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:

(1)在直线上任取一个点表示数0,这个点叫做原点(origin);

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

(3)选取适当的长度为单位长度。

6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.

(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

表达式:(a+b)+c=a+(b+c)

9、有理数减法法则

减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)

10、有理数乘法法则

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0.

乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

表达式:a(b+c)=ab+ac

11、倒数

1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。

根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

14、有理数的混合运算顺序

(1)“先乘方,再乘除,最后加减”的顺序进行;

(2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0

16、近似数(approximatenumber):

17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。

拓展知识:

1、数集:把一些数放在一起,就组成一个数的集合,简称数集。

一、(1)所有有理数组成的数集叫做有理数集;

二、(2)所有的整数组成的数集叫做整数集。

2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。

4、比较两个有理数大小的方法有:

(1)根据有理数在数轴上对应的点的位置直接比较;

(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;

(3)做差法:a-b>0a>b;

(4)做商法:a/b>1,b>0a>b.

二、基础训练

选择题

1、下列运算中正确的是().

a.a2a3=a6 b.=2 c.|(3-π)|=-π-3 d.32=-9

2、下列各判断句中错误的是()

a.数轴上原点的位置可以任意选定

b.数轴上与原点的距离等于个单位的点有两个

c.与原点距离等于-2的点应当用原点左边第2个单位的点来表示

d.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。

3、、是有理数,若>且,下列说法正确的是()

a.一定是正数b.一定是负数c.一定是正数d.一定是负数

4、两数相加,如果比每个加数都小,那么这两个数是()

a.同为正数b.同为负数c.一个正数,一个负数d.0和一个负数

5、两个非零有理数的和为零,则它们的商是()

a.0b.-1c.+1d.不能确定

6、一个数和它的倒数相等,则这个数是()

a.1b.-1c.±1d.±1和0

7、如果|a|=-a,下列成立的是()

a.a>0b.a0或a=0d.a

8、(-2)11+(-2)10的`值是()

a.-2b.(-2)21c.0d.-210

9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()

a.3瓶b.4瓶c.5瓶d.6瓶

10、在下列说法中,正确的个数是()

⑴任何一个有理数都可以用数轴上的一个点来表示

⑵数轴上的每一个点都表示一个有理数

⑶任何有理数的绝对值都不可能是负数

⑷每个有理数都有相反数

a、1b、2c、3d、4

11、如果一个数的相反数比它本身大,那么这个数为()

a、正数b、负数

c、整数d、不等于零的有理数

12、下列说法正确的是()

a、几个有理数相乘,当因数有奇数个时,积为负;

b、几个有理数相乘,当正因数有奇数个时,积为负;

c、几个有理数相乘,当负因数有奇数个时,积为负;

d、几个有理数相乘,当积为负数时,负因数有奇数个;

填空题

1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。

2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。

3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.

4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|.

5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.

6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.

7、1-2+3-4+5-6+……+20xx-2002的值是____________.

8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.

10、用四舍五入法把3.1415926精确到千分位是,用科学记数法表示302400,应记为,近似数3.0×精确到位。

11、正数–a的绝对值为__________;负数–b的绝对值为________

12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大

13、在数轴上表示两个数,的数总比的大。(用“左边”“右边”填空)

14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。

三、强化训练

1、计算:1+2+3+…+20xx+2003=__________.

2、已知:若(a,b均为整数)则a+b=

3、观察下列等式,你会发现什么规律:,,,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来

4、已知,则___________

5、已知是整数,是一个偶数,则a是(奇,偶)

6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

7、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。

8、如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求+…+的值。

9、如果规定符号“*”的意义是a*b=ab/(a+b),求2*(-3)*4的值。

10、已知|x+1|=4,(y+2)2=4,求x+y的值。

11、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。

例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):

星期一二三四五

每股涨跌+4+4.5-1-2.5-6

第1章(1)星期三收盘时,每股是多少元?

第2章(2)本周内最高价是每股多少元?最低价是多少元?

第3章(3)已知买进股票是付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?

第4章(4)以买进的股价为0点,用折线统计图表示本周该股的股价情况。

四、竞赛训练:

1、最小的非负有理数与最大的非正有理数的和是

2、乘积=

3、比较大小:a=,b=,则a b

4、满足不等式104≤a≤105的整数a的个数是x×104+1,则x的值是( )

a、9 b、8 c、7 d、6

5、最小的一位数的质数与最小的两位数的质数的积是( )

a、11 b、22 c、26 d、33

6、比较

7、计算:

8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com

9、计算:

10、计算

11、计算1+3+5+7+…+1997+1999的值

12、计算1+5+52+53+…+599+5100的值.

13、有理数均不为0,且设试求代数式20xx之值。

14、已知a、b、c为实数,且,求的值。

15、已知:。

16、解方程组。

17、若a、b、c为整数,且,求的值。

1.2.1有理数

七年级上(1.1正数和负数,1.2有理数)

1.2有理数

初一数学有理数教案篇7

《1.2有理数》教学设计

?学习目标】:

1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;

2、了解分类的标准 与集合的含义;

3、体验分类是数学上常用的处理问题方法;

?学习重点】:正确理解有理数的概念

?学习难点】:正确理解分类的标准和按照一定标准分类

《1.2.1有理数》同步练习含答案

5.对-3.14,下面说法正确的是(b)

a.是负数,不是分数

b.是负数,也是分数

c.是分数,不是有理数

d.不是分数,是有理数

《1.2有理数》同步练习含答案解析

8.如果a与1互为相反数,则|a|=( )

a.2 b.﹣2 c.1 d.﹣1

?考点】绝对值;相反数.

?分析】根据互为相反数的定义,知a=﹣1,从而求解.

互为相反数的定义:只有符号不同的两个数叫互为相反数.

?解答】解:根据a与1互为相反数,得

a=﹣1.

所以|a|=1.

故选c.

?点评】此题主要是考查了相反数的概念和绝对值的性质.

9.若|1﹣a|=a﹣1,则a的取值范围是( )

a.a>1 b.a≥1 c.a

?考点】绝对值.

?分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.

?解答】解:∵|1﹣a|=a﹣1,

∴1﹣a≤0,

∴a≥1,

故选b.

?点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.

初一数学有理数教案篇8

教学目标

1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的'方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

a·b=b·a;

(a·b)·c=a·(b·c);

(a+b)·c=a·c+b·c。

(三)教法建议

1、有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2、两数相乘时,确定符号的依据是“同号得正,异号得负”,绝对值相乘也就是小学学过的算术乘法。

3、基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4、几个数相乘,如果有一个因数为0,那么积就等于0。反之,如果积为0,那么,至少有一个因数为0。

5、小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6、如果因数是带分数,一般要将它化为假分数,以便于约分。

初一数学有理数教案8篇相关文章:

初一挫折演讲稿7篇

初一班干部的演讲稿范文5篇

初一班任工作总结6篇

初一工作计划范文通用6篇

初一工作计划范文6篇

初一班主任家长会讲话稿7篇

初一家长会班主任讲话稿5篇

初一家长会家长讲话稿最新7篇

初一家长会家长讲话稿5篇

初一的心得体会200字5篇

初一数学有理数教案8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
33580